Note on nonlinear Volterra integral equation in Hilbert space
نویسندگان
چکیده
منابع مشابه
Note on a Nonlinear Volterra Equation
9. S. G. Krein, and O. I. Prozorovskaya, An analogue of Seidel's method for operator equations, Voronez. Gos. Univ., Trudy Sem. Functional. Anal. 5 (1957), 35-38. 10. W. V. Petryshyn, The generalized overrelaxation method for the approximate solution of operator equations in Hubert space, J. Soc. Indust. Appl. Math. 10 (1962), 675-690. 11. S. Schechter, Relaxation methods for linear equations, ...
متن کاملApproximate Solution of Volterra-Fredholm Integral Equation with Hilbert Kernel
M. A. Abdou, Khamis I. Mohamed and A. S. Ismail, On the numerical solutions of Fredholm-Volterra integral equation, Appl. Math. Comp. 146, 713-728, (2003). M. A. Abdou, Khamis I. Mohamed and A. S. Ismail, Toeplitz Matrix and product Nystrom methods for solving the singular integral equation, Le Matematiche LVII-Fasc. I, 21-37, (2002). H. Brunner, On the numerical solution of nonlinear VolterraF...
متن کاملOn existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation
In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we give an example to illustrate the applications of our results.
متن کاملComputational Methods for a Nonlinear Volterra Integral Equation
In this work we are concerned with the numerical solution of a nonlinear weakly singular Volterra integral equation with a nonsmooth solution. We investigate the application of product integration methods and a detailed analysis of the Trapezoidal method is given. In order to improve the numerical results we consider extrapolation procedures and collocation methods based on graded meshes. Sever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1980
ISSN: 0386-2194
DOI: 10.3792/pjaa.56.9